

JYOTI NIVAS COLLEGE AUTONOMOUS BANGALORE – 560 095 DEPARTMENT OF ZOOLOGY B.Sc. IV SEMESTER ZOOLOGY PAPER IV SYLLABUS (2024 SEP BATCH) CELL BIOLOGY, GENETICS AND IMMUNOLOGY

COURSE TITLE	CELL BIOLOGY, GENETICS AND IMMUNOLOGY
COURSE CODE	24IVZL4T
COURSE CREDITS	3
TOTAL CONTACT HOURS	56 HOURS
DURATION OF ESA	3 HOURS
FORMATIVE ASSESSMENT	20 MARKS
MARKS	
SUMMATIVE ASSESSMENT	80 MARKS
MARKS	

Course Pre-requisite(s): Outcome

Course Out comes (COs): After the successful completion of the course, the student will be able to:

CO1: understanding of cellular architecture and diversity of prokaryotic and eukaryotic cells.

CO2: Acquire a deep insight on the concepts of cell biology and the ultrastructure of cells, structure and function of organelles.

CO3: Illustrate the phases of cell cycle, cell division, reductional division in germ cells.

CO4: To understand the fundamental concepts of immunology including cells and organs of immune system, immune responses, antibody structure, MHC complex and immunization programme.

CO5: Analyze the principles of genetic inheritance and chromosomal variations in organisms and also achieve competence in undergraduate level problem solving skills relevant to the genetics.

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Out comes (POs)

Course Outcomes (COs)/(POs)	25IVZL4T
I Core competency	X
II Critical thinking	X
III Analytical reasoning	X
IV Research skills	X
V Team work	X

Course Articulation Matrix relates course outcomes of course with the corresponding program out comes whose attainment is attempted in this course. Mark 'X' in the inter section cell if a course outcome addresses a particular program

Content	56 Hrs
Unit - I	14 hrs
Cell Biology – 1	
Cell: Discovery of cell, Cell Theory, Ultrastructure of Animal Cell.	
Plasma membrane: Structure, Chemical composition and Fluid mosaic model.	
• Transport across cell membrane: Passive transport (simple and facilitated diffusion;	
osmosis) and active transport (Na ⁺ - K ⁺ pump), bulk transport.	
• Components of Cytoplasm, Ultra structure and functions of Mitochondrion, Golgi	
apparatus, Endoplasmic reticulum, Ribosomes and Lysosomes.	
Ultrastructure and functions of Nucleus.	
Structural organization of Chromosome.	
Chromatin Organization - Nucleosome model.	
Unit – II	14 hrs
Cell Biology – 2	
 Base composition and structure of DNA and t-RNA. 	
 Types of DNA; RNA – types and functions. 	
Cell division: Mitosis, significance of mitosis	
Cell cycle, its regulation and check points.	
 Meiosis and its significance, synaptonemal complex, crossing over, chiasma 	
formation.	
• Apoptosis: Definition, Steps in apoptosis, pathways (intrinsic and extrinsic) and	
significance.	
Genetics – 1	
 Genes and Environment: phenocopy, Norm of reactions (Fur colour in Himalayan Rabbit, human twins). 	
Mendelian Genetics: Terminologies, Mendelian Laws of inheritance -	
monohybrid and dihybrid, test cross, back cross with minimum 2 problems).	
• Incomplete Dominance. Gene interaction-Complementary(flower colour in sweet	
pea) and supplementary gene interactions (coat colour in rat).	
Unit - III	14 hrs

Genetics – 2 Sex Determination: a. Chromosomal basis of sex determination: XX- XY, XX-XO, ZZ-ZW, ZZ-ZO types with examples b. Environmental sex determination- Bonellia and Temperature dependent sex determination in Turtles. c. Hormonal control of sex determination -Free martins Patterns of inheritance: Autosomal Dominant (Eg. polydactyly), Autosomal recessive (Eg. Albinism), X-linked Dominant (Eg. Hypophosphatemia) and Xlinked recessive (Eg. Duchene muscular dystrophy). X – linked inheritance: Eye colour in Drosophila, Colour blindness and Haemophilia in Man. Y – linked inheritance: Hypertrichosis in man. Pedigree analysis: Definition, Symbols used in pedigree studies, Pedigree construction and analysis (Problems on polydactyly, albinism, colour blindness and haemophilia in Man). Human karyotyping- Definition, Patau's classification, Karyotypes of normal male and female, Karyotypes of chromosomal aberrations: Aneuploidy - Autosomal (Down's syndrome and Cri-du-Chat syndrome) and Allosomal (Turner's syndrome and Klinefelter's syndrome). Eugenics: Definition, positive and negative eugenics. Euthenics and Euphenics.

Unit - IV	14 hrs
Immunology	
 Definition, types of immunity, Innate and acquired immunity, Humoral immunity and cell mediated immunity, First, Second and third line of defense. Antigen Processing and Presentation- Properties of antigens and haptens (foreignness, molecular size, heterogeneity), B and T cell epitopes and role of B and T lymphocytes in immune response. Primary and Secondary Immune response. Introduction to organs of the Immune system – Primary lymphoid organs-Thymus and Bone marrow, Secondary lymphoid organs-Spleen, Lymph Node, GALT and MALT. 	
 Immunoglobulins: Structure of IgG antibody, Types and functions of immunoglobulins. Antibody-Antigen interaction: affinity, avidity, and specificity. Major histocompatibility complex - Structure of MHC I & II. MHC and its clinical significance with reference to autoimmunity and immunosuppression. Vaccines: Types and Uses - Immunization (BCG, OPV, Hepatitis B, Tetanus, DPT). Immunization schedules in infants and their importance in public health. 	

Pedagogy: Lectures, Presentations, Videos, Assignments and Weekly Formative Assessment Tests

BLUEPRINT FOR QUESTION PAPER Paper IV

Unit	Teaching (hrs)	Number of Questions			Total Marks
		12	08	04	
		(3 Marks)	(5 Marks)	(10 Marks)	
Unit 1	14	3	2	1	29
Unit 2	14	3	2	1	29
Unit 3	14	3	2	1	29
Unit 4	14	3	2	1	29
Total	56 hrs	12x3=36	8x5=40	4x10=40	116

IV SEMESTER ZOOLOGY -PAPER IV CELL BIOLOGY, GENETICS AND IMMUNOLOGY PRACTICAL

COURSE TITLE	CELL BIOLOGY, GENETICS AN IMMUNOLOGY PRACTICAL	
COURSE CODE	24IVZL4P	
COURSE CREDITS	2	
TOTAL CONTACT HOURS	48 HOURS (3 hours per week)	
DURATION OF ESA	3 HOURS	
FORMATIVE ASSESSMENT	Γ 10 MARKS	
MARKS		
SUMMATIVE ASSESSMENT	T 40 MARKS	
MARKS		

Course Pre-requisite(s): Outcome

Course Outcomes: After the successful completion of the course, the student will be able to:

CO1: To identify the liver parenchyma cells.

CO2: To prepare stained slides and to observe the different stages of Mitosis and Meiosis.

CO3: To study the chromosomal aberrations and understand the karyotyping analysis

CO4: How chromosomal aberrations are inherited in humans by pedigree analysis in families.

CO5: Solve various genetics problems.

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Out comes (POs)

Course Outcomes (COs)/(POs)	25IVZL4P
I Core competency	X
II Critical thinking	X
III Analytical reasoning	X
IV Research skills	X
V Team work	X

Course Articulation Matrix relates course out comes of course with the corresponding program out comes whose attainment is attempted in this course. Mark 'X 'in the inter section cell if a course outcome addresses a particular program outcome.

Sl. No.	Practical Contents	15 Units
1.	Isolation and observation of buccal epithelial cells or Liver Parenchyma cells.	1
2.	Differential centrifugation for separation of cellular components.	1
3.	Mitochondrial staining in Yeast cells using Janus Green stain.	1
4.	Squash preparation to study the different stages of Mitosis in root tip of <i>Allium cepa</i> .	2
5.	Squash preparation to study the different stages of Meiosis in grasshopper testis or flower buds of Allium <i>cepa</i> (virtual/ slides).	2
6.	To check the selective permeability of RBC's using different concentrations of NaCl solution.	1
7.	Widal test/Dot ELISA/ODD.	1
8.	Study of human Karyotype: Normal and Abnormal – Down's syndrome, Klinefelter's syndrome, Turner's syndrome, cri-du-chat syndrome.	2
9.	Pedigree symbols, pedigree construction and analysis - polydactyly, albinism, colour blindness and haemophilia in Man.	2
10.	Genetic problems: Monohybrid cross, Dihybrid cross, incomplete dominance, gene interaction.	2

Pedagogy: Lectures, Presentations, Videos, Assignments and Weekly Formative Assessment, Test

Formative Assessment for Practical	
Assessment Occasion/type	Marks
House Examination/Test	05
Class Room Performance / Attendance	05
Total	10 marks

References:

- 1. Lodish, H., Berk, A., Kaiser, C.A., Krieger, M., Bretscher, A., Ploegh, H., Amon, A. &
- 2. Martin, K., (2016). Molecular Cell Biology, 8th ed., W.H. Freeman & Co., New York.
- 3. Alberts et al: Molecular Biology of the Cell: Garland (2002).
- 4. Cooper: Cell: A Molecular Approach: ASM Press (2000).
- 5. Karp: Cell and Molecular Biology: Wiley (2002). Pierce B. Genetics. Freeman (2004).
- 6. Verma, P.S. and V.K. Agarwal: Genetics, 8th edition, S. Chand & Co, New Delhi (2013)
- 7. Vimala C.M: Introductory Zoology Vol. V, Interline Publishing, Bangalore. (2006)
- 8. Dubey: Text book of Biotechnology S. Chand & Co. New Delhi. (2006)
- 9. Brooker, R.J., (2017). Genetic analysis and principle, 6th ed., Mc Graw Hill.
- 10. Cooper & Sinauer G.M., (2019). The Cell: A Molecular Approach, International 8th ed.,
- 11. Karp, G., Iwasa, J. & Marshall W., (2016). Cell and Molecular Biology: Concepts and
- 12. Powar C.B (2019). Cell Biology 3rd edition. Himalaya Publishing House, Mumbai.
- 13. Gupta, P.K. (2019) Genetics, 5th Ed., Rastogi Publication, Meerut, India
- 14. Tamarin, R. (2017). Principles of Genetics, 7th ed., Mc-Graw Hill Publication.
- 15. Janis Kuby (2018). Immunology 6th Edition

- 16. Nandini Shetty (1993) Immunology: Introductory Textbook.
- 17. Latha, Madhavee P. (2012), A Textbook of Immunology, S. Chand Publishing.